If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11a^2-6=0
a = 11; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·11·(-6)
Δ = 264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{264}=\sqrt{4*66}=\sqrt{4}*\sqrt{66}=2\sqrt{66}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{66}}{2*11}=\frac{0-2\sqrt{66}}{22} =-\frac{2\sqrt{66}}{22} =-\frac{\sqrt{66}}{11} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{66}}{2*11}=\frac{0+2\sqrt{66}}{22} =\frac{2\sqrt{66}}{22} =\frac{\sqrt{66}}{11} $
| 5x+4x+3x=12x | | 9x-27=6x-66 | | 8x+26=8.33333 | | -8x-14=7(-2-4x)+4 | | (7/10)x=-(5/8) | | 8x+26=25/3 | | 18x-7=29 | | 7a^2+9a-24=0 | | 8x+26=12.5 | | X^2+(x^2+1)+(x^2+4)-50=0 | | 8x+26=25/2 | | x+54=226 | | M=(5x+23) | | 4y=47 | | 5^6r=12 | | 4/13=15/m-3 | | 6y-30=y+15 | | x+22x+34x+2.8=14 | | 1/5b=6+16 | | 9x-8+19=18x-13 | | 6(b+2=30 | | 12/3t=8 | | X^2+(x+1)^2+(x+2)^2=50 | | 20t+4.9t^2=-100 | | 4x-3-6x-12=35 | | 2/1 r−3=3(4−23 r) | | x^2+3/2x=1/2 | | 1/4(16+4p=) | | 3x+9x-5=11 | | 76+15x=140 | | 3x+1000=7x | | 9y+3=-23 |